Graded equivalences and Picard groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological Equivalences for Differential Graded Algebras

We investigate the relationship between differential graded algebras (dgas) and topological ring spectra. Every dga C gives rise to an Eilenberg-MacLane ring spectrum denoted HC. If HC and HD are weakly equivalent, then we say C and D are topologically equivalent. Quasiisomorphic dgas are topologically equivalent, but we produce explicit counterexamples of the converse. We also develop an assoc...

متن کامل

Picard Groups of Poisson Manifolds

For a Poisson manifold M we develop systematic methods to compute its Picard group Pic(M), i.e., its group of self Morita equivalences. We establish a precise relationship between Pic(M) and the group of gauge transformations up to Poisson diffeomorphisms showing, in particular, that their connected components of the identity coincide; this allows us to introduce the Picard Lie algebra of M and...

متن کامل

Picard Groups in Poisson Geometry

We study isomorphism classes of symplectic dual pairs P ← S → P , where P is an integrable Poisson manifold, S is symplectic, and the two maps are complete, surjective Poisson submersions with connected and simply-connected fibres. For fixed P , these Morita self-equivalences of P form a group Pic(P ) under a natural “tensor product” operation. Variants of this construction are also studied, fo...

متن کامل

Bimodule deformations, Picard groups and contravariant connections

We study deformations of invertible bimodules and the behavior of Picard groups under deformation quantization. While K0-groups are known to be stable under formal deformations of algebras, Picard groups may change drastically. We identify the semiclassical limit of bimodule deformations as contravariant connections and study the associated deformation quantization problem. Our main focus is on...

متن کامل

Hochschild Cohomology and Derived Picard Groups

We interpret Hochschild cohomology as the Lie algebra of the derived Picard group and deduce that it is preserved under derived equivalences.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 1999

ISSN: 0022-4049

DOI: 10.1016/s0022-4049(98)00011-5